Brownian Motion 6.1 Normal Distribution Definition 6.1.1. A r.v. X has a normal distribution with mean µ and variance σ2, where µ ∈ R, and σ > 0, if its density is f(x) =√1 2πσ e− (x−µ)2 2σ2. The previous definition makes sense because f is a nonnegative function and R ∞ −∞ √1 2πσ e− (x−µ)2 2σ2dx = 1. Note that by the changes of variablesx−µ σ = t R.
7 bedroom cabins in georgia